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PROBLEMS AND RESULTS

This contract continued ongoing research in three main problem areas: (1) diagnostic and

critical data analysis, (2) distribution shapes in real data, and (3) computer implementation of selected

data-analytic techniques.

Diaenostic and Critical Data Analysis

As data analysis proceeds in an exploratory mode, it often raises questions about the strength

of patterns that have been uncovered or about individual observations that seem un:s ial. Critical

data analysis aims to deal with these types of confirmatory questions.

During the period of the contract our research in this area involved outlier detection, robust

analysis of variance, regression diagnostics, robust/resistant techniques in quality control, and other

applications.

In earlier work related to outlier detection, Hoaglin, Iglewicz, and Tukey (1986) studied the

performance of a standard outlier-labeling technique from exploratory data analysis. This rule uses the

lower fourth FL and the upper fourth FU of the sample (approximate sample quartiles) as the basis for

the cutoffs

FL - k(Fu-FL) and FU + k(Fu-FL) (1)

with k = 1.5. Any observations that fall outside these cutoffs are labeled as possible outliers and

subjected to closer scrutiny whenever feasible.

This work measured the performance of this and other rules in terms of the some-outside rate

per sample: the probability that a sample of n contains at least one observation beyond the cutoffs. By



design the basic exploratory rule (k=1.5) has a relatively high some-outside rate per sample for

Gaussian data: roughly between 15 percent and 35 percent as n ranges from 5 to 50. The original

definition gives the fourths in terms of the depth, f = !((n+3)/2] with [.] the greatest-integer function,

and the sample order statistics X < .. !< X(n ) according to

FL = X(f) and FU = X(n+lf)

As a consequence the some-outside rate per sample increases as n increases, following separate but

similar curves for the four values of n mod 4. This behavior may be undesirable if one does not insist

on a simple definition of f that facilitates hand calculation.

Hoaglin and Iglewicz (1987b) studied the results of fine-tuning such outlier-labeling rules in

two ways. First, they considered two forms of smooth interpolation for the fourths: the "ideal"

definition fI = n/4 + (5/12) and an alternative based on a common definition of the quartiles, fQ=

n/4 + (1/4). With these definitions the some-outside rate per sample follows a single smooth curve

against n. Second, to permit use of such rules for more traditional outlier detection, they determined

values of the constant k (for fl, fQ, and the standard definition, and at selected sample sizes n < 300)

that maintain the some-outside rate per sample at .10 or .05 for Gaussian data. As a rough

approximation the rule based on fI can use k = 2.2 out to about n = 50 for a rate of .05. For a rate of

.10 no constant value of k seems satisfactory; a crude approximation yields k - 2.02 - 2.5/n for 7 <

n < 52.

In addition to their simple form, outlier-detection rules that use resistant cutoffs (as in

equation (1)) have the convenient property that, within reasonable limits, the user does not need to

specify the maximum possible number of outliers. The limitation arises from the breakdown point of

the location measure and scale measure used in specifying the cutoffs. For a measure of location, say,

breakdown involves replacing observations in the sample by arbitrarily extreme values. The
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breakdown point is the smallest fraction of such contamination that can cause the value of the measure

to become arbitrary. Because of the way that they use the fourths, the cutoffs in equation (1) have a

breakdown point of essentially 25%.

One can also start with a robust/resistant location estimator T and a robust/resistant scale

estimator S and then use these to define an outlier-labeling rule by placing cutoffs at T±kS for some

suitable positive constant k. By choosing particular T and S that have good efficiency as robust

estimators, one hopes to produce an outlier-labeling rule (and corresponding outlier-detection rule) that

performs well according to a variety of criteria. Hoaglin and Iglewicz (1987a) investigated rules based

on a biweight M-estimator of location, Tbi, and a biweight A-estimator of scale, Sbi (see, for example.

Kafadar (1983) and Lax (1985)). To facilitate comparison, they matched the population values of the

cutoffs Tbi ± k'Sbi in Gaussian data to those of the exploratory rules in equation (1) by taking k =

0.6745 + 1.349k. The resulting some-outside rate per sample (estimated by simulation) for Gaussian

data is about 11 percentage points lower for n < 50 than the rate for the standard exploratory rule and

about 7 percentage points lower than that for the exploratory rule with fI as the depth of the fourths.

That is, when the data are ideally well-behaved, the biweight rule less often labels any observations as

outside. Hoaglin and Iglewicz also studied other characteristics of the biweight rules; and they

determined values of k (again at selected n < 300) that correspond to a some-outside rate per sample

of .10 and .05, so that the rule can be used for outlier detection.

Thus far all the results described pertain to null situations, in which the data come from a

Gaussian distribution. Hoaglin, Iglewicz, and Tukey (1986) included, as alternative null situations,

some symmetric distributions with heavier tails, but none of the data have contained known outliers.

To pursue the performance of various rules in detecting specified outliers (one suitable definition of

power in this context), Hoaglin and Iglewicz (1988) developed a class of fixed-outlier models. A model

of this type begins with r fixed observations and completes a "sample" of n by taking n-r random

observations from the standard Gaussian distribution.
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For r=1 and the fixed observation at x, one determines the probability that a rule labels the

observation at x as an outlier. By systematically varying x one obtains the rule's performance curve,

Pn(x). When r=2, the performance curve generalizes to two performance surfaces. If x1 and xq are

the fixed observations, P nl(XX 2 ) is the probability that the rule labels x, an outlier, and Pn 2 (XlX9)

is defined similarly for x2 . For some rules the task of studying the performance surfaces simplifies,

because the cross-sections at x2 = x1l, x2 = -xl, and x2 = 0 appear to capture the important features

of Pnl and (by symmetry) Pn2" Thus one plots Pnl(xx), Pnl(X,-X), and Pnl(xO) against x. This

approach provides control over the location of the utitliers; and it is convenient for simulation, because

one can generate the random part of the sample and then vary x over a grid.

Hoaglin and Iglewicz used the models with 1 and 2 fixed outliers to compare the perormance

of several outlier-detection rules at n=20 and n=40. They considered primarily the exploratory rule,

the biweight rule, and a standard test based on the sample kurtosis. (For Gaussian data the kurtosis

test has certain optimality properties when the outliers arise from arbitrary shifts in location or from

arbitrary increases in variance.) All three were set for outlier detection at the .05 level. At both n=20

and n=40, Pn(x) for the biweight rule follows that for the kurtosis test fairly closely, whereas the curve

for the exploratory rule drops well below for x>3. For the cross-section Pnl(x,O) a similar pattern

emerges, as one would expect from the fact that the observation at 0 cannot be an outlier. The other

two cross-sections give a more complicated picture. When the two fixed outliers are both at x and

n=20, the biweight rule and the exploratory rule perform as well as the kurtosis test and perhaps

slightly better over 3 < x < 5. At n=40, however, the kurtosis test outperforms the other two by a

substantial margin over the same interval. And similar patterns of domination emerged with the two

fixed outliers at x and -x, both at n=20 and n=40. These results demonstrate the usefulness of the

fixed-outlier model in comparing outlier-detection rules. Further study of them may lead to

improvements in the biweight rule or suggest other robust/resistant rules.

Rocke (1983) studied robust estimation of variance components in the analysis of variance.
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Using a substantial simulation, he compared the performance of the standard estimators of variance

components with those of two robust methods (Huber and biweight) in the two-way mixed model with

various relative sizes of between-means variance, various sizes and frequency of outliers, and various

sample sizes. Rocke observed that for small between-means variance the biweight estimator is strongly

biased compared to the Huber estimator. From further analysis of the results of Rocke's simulations,

Mosteller found that, in large parts of the space of simulations, the biweight was much to be preferred

in spite of its poor performance in the more "null" situation. More important, in much of the

simulation space both estimators performed poorly, even when one was much to be preferred. This

latter finding is especially troubling because the basic methods underlying these two estimators have

been especially successful in handling outliers in the one-sample problem. In correspondence with John

W. Tukey these results led us to conclude that we will need to reformulate the goals of robust

estimation for the analysis of variance.

Because of their continuing interest in regression diagnostics for high-leverage and influential

observations, Hoaglin and Kemptborne (1986) contributed discussion on a review paper by Chatterjee

and Hadi. The discussion emphasized cutoffs, rules of thumb, and their role in identifying influential

observations; simple residual plots that display high-leverage, outlying, and influential observations

simultaneously; approaches to uncovering influential groups of observations; and selection of subsets of

carriers. It also sketched a step-by-step diagnostic strategy that should be useful in practice.

As a basis for better empirical understanding of the behavior of regression diagnostics in large

data sets, Hoaglin obtained (from a colleague at Abt Associates Inc.) the values of various regression

diagnostics (e.g., diagonal elements of the hat matrix, DFITS, DBETAS, and studentized residuals)

that had been computed for two sizable regressions. One involved n = 1034 observations, the other

had 5719, and both had p= 2 1 explanatory variables (including the constant). For the smaller data set

he analyzed the frequency with which the values of DFITS and DBETAS 1 , • •., DBETAS 2 1 fell

outside the recommended cutoff values (±2;,f7 for DFITS and ±2/iii for DBETAS). For DFITS the
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percentage was 6.0%, whereas for the DBETAS it ranged from 0.6% to 6.8% (often closer to 4% or 6%

than to the nominal 5%). Normal probability plots for DFITS and one of the DBETAS revealed that

their distributions (across the observations in the data set) had substantially heavier tails than the

Gaussian.

Basic techniques for diagnosing leverage and influence in regression could be applied more often

than they so far seem to be. As one step in the process of speeding the spread of diagnostics in

everyday applications of regression, Hoaglin (1988a) gave a tutorial account of leverage and influence in

simple linear regression.

The area of quality control offers many opportunities to apply exploratory and robust

methods. lglewicz and Hoaglin (1987) devised a control chart that uses boxplots to show more

information than the customary means and ranges and to reveal possibly outlying observations.

In an application of robust/resistant methods to anthropometr3, Himes and Hoaglin (1989)

investigated techniques for smoothing reference data on human growth. For such measurements as

triceps skinfold thickness, the available (cross-sectional) data usually give selected percentiles by sex

and single year of age. By working with the sequences of differences between adjacent age-specific

percentiles, a variant of the exploratory technique known as delineation ensures that the resulting

smoothed percentiles maintain the proper order. In an example Himes and Hoaglin obtained smoothed

percentiles that provided a more satisfactory representation of the raw percentiles than did the

published smoothed percentiles, which researchers at the National Center for Health Statistics had

produced by straightforward use of cubic-spline regression.

For data that might be handled by two-way analysis of variance with one observation per cell,

diagnosis of multiplicative structure can encounter difficulties if not done resistantly. In its most

general form a single multiplicative term in the residuals after a simple additive fit, e = yij -

(m+ai+b), can be summarized as kcid. Least-squares fitting, however, allows a single aberrant
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observation among the yij to perturb the residuals in a pattern of the form kcid.. Thus an isolated

anomaly leaks into the eij as a systematic pattern. One can avoid such leakage by obtaining the

residuals from median polish or another suitably resistant analysis. To facilitate diagnosis of

multiplicative structure, Hoaglin refined this approach by using the graphical display known as the

scatterplot matrix. One examines the scatterplots for all pairs of columns (or rows) of the eij; that is,

the (s,t) cell in the matrix contains the scatterplot of eis versus eit, one point for each i. If the eij

resemble kcid., then the (s,t) scatterplot will tend to follow a straight line with slope ds/dt. One can

readily assess the possibility of leakage problems by comparing the scatterplot matrix for the least-

squares residuals with one for resistant residuals. Several examples have given encouraging results.

Distribution Shape

In a number of contexts it can be beneficial to develop detailed information on the shapes of

distributions that tend to arise in real data. For example, data in a particular area of application may

suggest a need for a robust estimator, and one might like to base the choice of an estimator on an

assessment of the ways in which the underlying distribution may depart from an ideal shape (usually

the Gaussian). In another example the samples may be large enough to provide a reasonable amount

of information on the shape of the distribution, so that one can criticize an assumed distributional

model and adapt the model to the data.

As part of our research on distribution shape we added substantially to our collection of data

for study. The data sets include the following:

Opthamology (spherical and cylindrical refractive errors, n = 510)

Blood pressure (by sex in three age groups, n ranges from 534 to 965)

Laboratory measurements (mostly blood chemistry) on subjects in two treatment groups (n ; 1300)

Annual incomes reported by low-income households in two sites (n = 994 and 608)

Climatic variables in Texas (15 variables for each of 189 quadrats covering the state)

7



Birth weights from the Medical Birth Registry of Norway: first and second births to women who had

exactly two births, both singleton, during the period 1975-1984 (by the sexes of the two

children and the year of the first birth, n - 4000 per stratum).

For the last of the data sets in this list, the Norwegian birth data, Hoaglin began systematic

analysis, focusing primarily on questions related to low-weight births. He used a variety of graphical

techniques including quantile-quantile plots, along with numerical techniques based on the g-and-h

distributions (see below). Initial results indicated, among other things, that distributions of second-

birth weights closely resemble a mixture of a Gaussian distribution and a small percentage of lower-

weight births, but not so closely as previous analyses in the literature have assumed. He also found

that adjustment of the birth weight of the second child for multiple linear regression on the birth

weight of the first child and the gestational age of the second child produced a distribution whose shape

is much closer to Gaussian. These shapes showed good agreement across the four combinations of the

sexes of the two children and across strata on the birth weight of the first child. The findings should

contribute to the discussion of the phenomenon of repeated low-weight births.

Focusing on another aspect of distribution shape, Mosteller gathered a substantial number of

references about the frequency with which outliers enter real sets of data in the empirical literature, as

well as about fitting the tails of data distributions. In further work he plans to study tail behavior by

empirical fitting of generalized Pareto distributions (Smith, 1987).

For quantitative description of distribution shape, we often use Tukey's family of g-and-h

distributions, discussed by Hoaglin (1985). By using quantiles the basic techniques for this family

provide resistance, and they offer greater flexibility than the usual third and fourth moments. In terms

of a standard Gaussian random variable Z the basic random variable Y of the g-and-h family (for a

fixed value of tLe skewness parameter g and the elongation parameter h) is given by

L 
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y = 9Z 1 ehZ 2 /2. (2)

One can readily introduce location and scale parameters.

To provide a description of skewness, for example, one begins with the median y.5 and some

selected pairs of quantiles yp and yl-p at tail areas p (O<p<.5) that are either specified in advance

(e.g., p = 1, 1, ... ) or suggested by the data. The position of yp and yl-p relative to

corresponds to a value of g (denoted by gp or jp) according to

p log P- (3)

where Zp is the pth quantile of the standard Gaussian distribution.

As a basis for our empirical work on distribution shape, we needed an estimate of the

variability of gp from a set of data. Thus Hoaglin and Tukey (1988) developed an approximation for

var(gp). Their approach applies the anglit transformation to estimate the variance of p, S'lp, and

The data may come either as order statistics or as a frequency distribution. Hoaglin used these

approximations in studying skewness in the Norwegian birth weight data.

Analyses of data often involve a transformation, such as the logarithm, square root, or

reciprocal, and these nonlinear transformations affect the shape of distributions. To illustrate the point

that such transformations or their results arise in everyday life more often than most people realize,

Hoaglin (1988b) collected and discussed a variety of nontechnical examples, including magnitudes of

stars, the Richter scale for earthquakes, intensity of sounds, average speed in auto races, and measures

of gasoline consumption.
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Computer Software

In connection with our work on new techniques of data analysis, we often develop computer

software that implements the techniques. From the start the design of such programs looks beyond an

initial version for personal use to a more polished version that could readily be made available to

others.

During the period of the contract our main effort in this area focused on programs that

calculate estimates of var(gp) at selected values of p for data to which one is applying the g-and-h

distributions, as described above. Separate versions start with an ordered sample or a frequency

distribution. Each delivers the values of the gp, the estimated var(gp), confidence intervals for the Ap,

and estimated covariances of the Ap at different p.

Occasionally our interest in software leads us to review available implementations of a

particular technique. Frigge, Hoaglin, and Iglewicz (1987, 1989) examined the implementations (in

Minitab, S, SAS, SPSS, Statgraphics, and Systat) of the exploratory display known as the boxplot,

discussed the confusing variety of nonstandard definitions, and made suggestions for improvements.
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